Resistance

o Resistance is what causes the load to convert electrical energy into heat energy
o Resistances are the barriers to the flow of charge

Resistance is calculated using Ohms Law

$$
\mathrm{R}=\mathrm{V} / \mathrm{I}
$$

$>$ The Unit of resistance is ohms Ω

Factors that Affect Resistance

o Length of Wire
$>$ Eg. Extension cords heating up
> Longer the wires the more resistance
o Cross Sectional Area
> Larger the cross sectional area the less the resistance
o Temperature
> Higher the temperature the more the resistance
> The longer devices are used, the warmer wires get and the less efficient they become.
o Material
> Some materials are better conductors than others
$>$ E.g. copper is a better conductor than iron

There are 3 variations of the formula
o V = I* R
o I = V/R
○ $\mathbf{R}=\mathrm{V} / \mathrm{l}$

Using the GRASS PROBLEM SOLVING METHOD
o GIVEN

- REQUIRED
o ANALYSIS
o SOLUTION
o STATEMENT

Calculate the Resistance Using Ohms Law

What is the resistance of the resistor in the following circuit?

Given

Calculate Current Using Ohms Law

A $4 v$ battery is placed in a series circuit with a 2Ω resistor.
What is the total current that will flow through the circuit?
Given
$R=2 \Omega$
$V=4 V$
I = ?

Calculate the Voltage using Ohms Law

What voltage is required to produce 2 a though a circuit with a 3Ω resistor.

Given

More Complex Problem Solving

Problem Solving

Resistance in series sum together when calculating total resistance

What is the current in the circuit below?
$\mathrm{V}=12 \mathrm{~V}$
R total $=2 \Omega+4 \Omega$
I = ?

Problem Solving

What is the voltage of the resistor?
What is the Voltage of the light bulb?
$\mathrm{V}=\mathrm{IR}$

