Resistance

- Resistance is what causes the load to convert electrical energy into heat energy
- Resistances are the barriers to the flow of charge
 - ➤ Resistance is calculated using Ohms Law

R = V/I

 \triangleright The Unit of resistance is ohms Ω

Factors that Affect Resistance

- Length of Wire
 - > Eg. Extension cords heating up
 - > Longer the wires the more resistance
- o Cross Sectional Area
 - > Larger the cross sectional area the less the resistance
- o **Temperature**
 - > Higher the temperature the more the resistance
 - > The longer devices are used, the warmer wires get and the less efficient they become.
- o Material
 - > Some materials are better conductors than others
 - > E.g. copper is a better conductor than iron

There are 3 variations of the formula

- o V = I * R
- o I = V/R
- o $\mathbf{R} = \mathbf{V}/\mathbf{I}$

Using the GRASS PROBLEM SOLVING METHOD

- o **GIVEN**
- o **REQUIRED**
- o **ANALYSIS**
- o **SOLUTION**
- o **STATEMENT**

Calculate the Resistance Using Ohms Law

What is the resistance of the resistor in the following circuit?

Given

$$I = 4 A$$
 $V = 12 V$
 $R = ? \Omega$
 $I = 4A$
 $R = ? \Omega$

Calculate Current Using Ohms Law

A 4v battery is placed in a series circuit with a 2Ω resistor.

What is the total current that will flow through the circuit?

Given

$$R = 2 \Omega$$

$$V = 4V$$

$$I = ?$$

$$V = 4V$$

Calculate the Voltage using Ohms Law

What voltage is required to produce 2a though a circuit with a 3Ω resistor.

Given

$$R = 3\Omega$$

More Complex Problem Solving

Problem Solving

Resistance in series sum together when calculating total resistance

What is the current in the circuit below?

$$V = 12 V$$

R total =
$$2\Omega + 4\Omega$$

$$I = ?$$

Problem Solving

What is the voltage of the resistor?

What is the Voltage of the light bulb?

$$V = IR$$

