SUSTAINABILITY http://www.youtube.com/watch?v=B5NiTN0chj0

Definition of Sustainability

The ability of the human population to continue living as we are living for generations to come.

- We must think about all our actions by asking 3 questions.
 - How does it affect people?
 - · How does it affect the economy?
 - How does it affect the environment?
- We must act responsibly.

Venn Diagrams

Environmental Dimension

- Live without using up <u>resources</u> faster than they are naturally produced.
 - · food, fuel, forests, water
- Live without polluting the environment and disturbing natural processes
 - air, water soil, carbon cycle
- Live without negatively affecting the populations of all other living things.
 - · maintain biodiversity

Sustainability looks different depending on the type of resource...

- · Renewable resource: naturally regenerated
 - E.g. Forestry, fishing
 - Ideally Rate of use =or< Rate of Regeneration
- Non-renewable resource: fixed amount present in the environment and can not be regenerated
 - E.g. mining, oil and gas
 - To be sustainable it must be both
 - Economic/Social value over a long period of time
 - Cause minimal impact on ecosystems and or biosphere

Modeling Resource Use

- Strategy 1: Take it all
- E.g. a strategy for mining tar sands involves strip mining

When can Strategy 1 be sustainable?

- · Clear cutting has a place in forestry
 - Some trees will not regenerate without full sun
 - Clear cutting is done in a patchwork pattern
 - Time scale is 100's ! of years

Strategy 2: Intensive Resource Use

- TASK
- 1. Students fill one graduated cylinder full of water and measure the volume of water.
- 2. With a straw they transfer water from one cylinder to the other and record the volume remaining in the 1st cylinder.
- 3. Students continue this until the graduated cylinder is empty.
- 4. Students graph this data

Analysis Questions

- · What does the transfer of water represent?
- What happens to the amount of water you can take each time?
- · Describe the type of curve we observe
- · What is the end result of intensive resource use?
- Gives examples of resources that have been used in this way.

Strategy 3: Sustainable Resource Use

- 1. Students fill one graduated cylinder full of water and measure the volume of water.
- 2. Student A is given a large straw, representing resource use.
- 3. Student B is given a smaller straw, representing conservation effort.
- 4. Student A uses his straw to transfer water from cylinder 1 to cylinder 2 at the same time student B uses his straw to transfer water from cylinder 2 to
- 5. At the end of each transfer students record the volume of water in the first calendar
- 6. Students will graph their results.

Analysis Questions

- What does the transfer of water represent from cylinder 1?
- · What did the transfer of water represent for cylinder 2?
- · Describe the type of curve we observe
- What is the end result of intensive resource use?
- The end result illustrates the process of 'Dynamic Equilibrium'. What does this term mean?
- · Describe resources that are used in this way.

Analysis Questions

- · What does the transfer of water represent?
 - The transfer of water using the straw represents trapping or hunting or fishing efforts. With these activities you only take a portion of the population.
- What happens to the amount of water you can take each time?
 Students will notice that they are able to take less and less 'volume' each time.
- · Describe the type of curve we observe
 - The graph should follow a declining exponential curve.
- · What is the end result of intensive resource use?
 - With continued hunting or fishing pressure the resource is eliminated or the hunter gives up because it is not worth their effort to continue.
- Gives examples of resources that have been used in this way.
 - For example: cod stocks, game birds, blue fin tuna etc..........

Analysis

- What does the transfer of water represent from cylinder 1?
 Harvest / Use of the resource
- What did the transfer of water represent for cylinder 2?
 Natural growth/regeneration of the population
- Describe the type of curve we observe
 Exponential

- What is the end result of intensive resource use?
 The overall population does not change but resource use continues.
- The end result illustrates the process of 'Dynamic Equilibrium'. What does this term mean?

 A balanced is reached but constant change occurs because opposing processes continue.
- Describe resources that are used in this way.
 All natural resources 'should' be used in this way.
 E.g. water